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B. N. G O R D E I C H I K  and  A. M. T E R - K R I K O R O V  

Moscow, Dolgoprudnyi 

(Received 23 February 1995) 

New representations of the fundamental solution of the equation of internal waves as convergent and asymptotic series are 
proposed using special functions. A system of three formulae is constructed, each defining a uniform approximation of the 
fundamental solution in some space-time domain, the union of these domains covering the whole space-time continuum. The 
results of a numerical e:q~eriment are presented, which show that the relative approximation error does not exceed 0.5%, while 
the computer time requtired to calculate the fundamental solution is reduced by a factor of over 200 as compared to the exact 
formulae. Copyright © 1996 Elsevier Science Ltd. 

1. I N T E G R A L  R E P R E S E N T A T I O N S  O F  T H E  
F U N D A M E N T A L  S O L U T I O N  

The linear equation of internal waves in the Boussinesq approximation has the form [1] 

¢)2(¢)2W 02W O21,V'~ 2(()2W t-)2W I 02M(x,y,Z,t) 
/~m2 +-q-T+-q--I-/+N [3--~-2 + . = (1.1) Ot 2 ~. ox ely- oz j ~v 2 ) OzOt 

where w is a small vertical displacement of a fluid particle from the equilibrium position, M is the 
distribution of the mass sources, and N is the Vfiisfilfi-Brunt frequency. If p(z) defines the density 
distribution in the equilibrium state of an incompressible fluid, then N 2 = --gp (z)/p(z) >- O, and if e(z) 
defines the entropy distribution in the equilibrium state of an ideal gas, then iV" = ge'(z)/e(z) >- O. We 
shall assume that N = const. Equation (1.1) holds for slow motions of a stratified gas. 

The fundamental solution ~(x, y, z, t) satisfies Eq. (1.1) with right-hand side 8(x)8(y)8(z)8(t). 
For a historical s,urvey and bibliography see [1, 2]. 
The solution of physical problems concerned with the motion of point sources, sinks, and dipoles 

can be expressed in terms of the derivatives of the fundamental solution with respect to the space and 
time variables. The solution of problems involving the motion of distributed sources or dipoles can be 
reduced to computing the convolution of known functions with the fundamental solution. The efficiency 
of a numerical solution of such problems depends on how rapidly the values of the fundamental solution 
can be calculated. 

The function • can be represented in the form 

1:i)=_ i tp(~.,Nt), R2 =x2+y2+z2" ~= z (1.2) 
4 ~ N R  R 

where the Laplace transform of tp has the form [1, 2] 

Lqa = (p2 + N 2 ) - ~ ( p 2  + N 2 L 2 ) - ~  (1.3) 

(p is the dual variable to t). 
Applying contour integration methods, one can change from (1.3) to the original representation [2] 

2 I sin(x~)d~ 

,[, > (1.4) 
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Because cp is an even function of L, we can henceforth assume without loss of generality that ~, I> 0. 
Taking another branch of the analytic function (1.3), we can write 

2 ~ cos(x~)a~ 2 i cos(x~)d~ , 0 ~< 2L < 1 (1.5) 
~ ( ~ "  "[) = ~ 0 ~/( |  -- ~2 )(~2 _ ~2 ) ~ ~/(~2 _ 1)(~2 -- ~2 ) 

The substitution tg 2 u = (~2 _ k2)( 1 _ ~2) reduces the integral (1.4) to 

qo(~.,~)=2 " i  2 sin(x~l-k2.sin 2 u)du, k 2 +~2 =!  (1.6) 
0 4 1 - k 2 s i n 2  u 

One more integral representation of q)(7~, x) can be obtained by making the substitution 2~ = 1 + L - 
(1 - k)cos 0 in the integral (1.4). Then 

¢ , (~ ,~)=4n ! 

7£ 

 co4,i,o,,,o ! (1.7) 

I + L  I+L  

1 I 
/ i (0 )=  4-Q(cos0) ~ 4Q(-cosO) '  A ( 0 ) =  

1 1 
4-~cosO) 4Q(TcosO) 

Q(u) = (I - k)2  u 2 _ 4 ( !  - k ) ( !  + k ) u  + 3~. 2 + 10k  + 3 

The calculation of the values of ~0, (Pl, ~ from the integral formulae (1.4)-(1.7) requires large amounts 
of computer time. Since the solution of the Cauchy problem and non-homogeneous problems for 
Eq. (1.1) is expressed in terms of various convolutions of the fundamental solution with known functions, 
the time required to compute the convolutions makes it difficult to solve such problems numerically. 
It is therefore better to obtain approximations of the fundamental solution which will make it possible 
to compute the values of cp with sufficient accuracy in a relatively short computer time. 

2. R E P R E S E N T A T I O N S  OF cp AS A S E R I E S  I N V O L V I N G  S P E C I A L  
F U N C T I O N S  

We propose a number of new representations of 9. We will denote by J,(z), Pn(z) and T,(z) the Bessel 
functions, the Legendre polynomial, and the Chebyshev polynomial [3]. The representation 

~0(~,, x) = 2 ~ J2,,+n (x) P,, (I - 2k 2 ) (2.1) 
n = 0  

holds. When x is fixed, J2n+l(X) decreases rapidly as n increases and series (2.1) converges rapidly. 
To prove (2.1) we substitute the identities 

n = l  
It 

4 ~ Tzn(ksin 8)d0 = P,,(I - 2~.2) - P,_s(i -2Z, 2) 
0 

into (1.4), thereby obtaining 

~ -  Jz,,+~('r)~(l- 2 -) 
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The functions 9t and 92 in (1.7) can also be represented by the series 

2 n 
4 ** / ' l - - k ' ~  /" i+~ , '~  (2n)( I - -~ ,~  

" : 7  ,~o(-'rt-r-J "~"t~-~-J ~° t~-~--J (~~) 
" ' - ' = ' + '  ( 

4 ~ ( - l ) " / ' - " /  e~,,+, 2 4 ~'+'' , 
I P 2 = c  ,,=0 t. c J - t, c 7 \ z / 

c 2 = 37t.2 + 10k+ 3 

To prove (2.2) we use the identities 

C n=O 

which are easily de, rived from the expression for the generating function of Legendre polynomials. 
Series (2.2) converge uniformly in x at a geometric rate. Indeed 

IP,,(x)l<~(lxl+~) ", IJ~(x)l~<! 

'- r 
< + = t !-~-3-£) 

In addition, series (2.2) are uniformly asymptotic in x as ~ ---) 1. 
We observe that the larger the value of x the slower the convergence of (2.1). A numerical experiment 

indicates that computing the values of the function from (2.1) and (2.2) does not give any substantial 
gain iii computer  tiime as compared to calculations using the integral formulae. 

3. T H E  A.~;YMPTOTIC S E R I E S  AS x --~ o o  AND W H E N  0 < 8 < 7C < 1 - 5 

We propose a new form of asymptotic series for (p as x ---) o~. Let  us introduce the polynomials 

O,,(k2)=~.~"C ( -  k: ]-- k~"~-~)" ~: e,,, l - ~  ~ =  
" t  ~'~) .... o 

We can represent q) by an asymptotic series of the form 

I 2 - ( 2 n - I ) ! !  r , k 2 ) s i n ( x _ 4 + ~ _ ~ )  + 

+-.F k • likx ,,~0 (2n - i)!! D,, (3.1) 
= ('CL)" k 2'' 

for 0 < Ii < ~ < 1 - 6 and z --~ ~. All terms of asymptotic series (3.1) are defined apart from a function 
which converges to zero as x --~ <~ more rapidly than any negative power of x. 
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Expansion (3.1) can be obtained by applying the stationary-phase method [4] to integral (1.6). This integral has 
two stationary points u = 0 and u = x/2. If the contribution of u = 0 to the asynaptotic series is I1(k% x), it can 
easily be shown by changing the variable of integration that the contribution I2(k ~, x) of the point u = ~/2 can be 
expressed in terms of I1(k% x) 

1 / (  k 2 ~.]  
, i-g. ) 

By making the change of variable 1 - ~/(1 - k 2 sin 2 u) = k2a)z/2 in integral (1.6) we find that I1(k 2, x) is equal to 
the contribution of the stationary point ~ = 0 to the asymptotic form of the integral 

2 j sin(x(l-~k2v2))dv 
It 0 ~/(l-k202 /4)(l-v2 +k4v 4 /4) 

Using the generating function for Legendre polynomials to represent the function multiplying the sine function 
as a series with even powers of ~ and then estimating all the standard integrals as in the stationary-phase method 
[4], we obtain formulae (3.1). 

Let us write down expressions for the first three polynomials C,, and Dn 

I k 2 IT8  C 0 = D 0 = l ,  C l = - + - - ,  C 2= (48 -8k2+3k  4) 
2 8 

D I = 4 -  5k___~ 2 D2 = I-~8 (48-88k2 +43k 4) 
8 ' 

Substituting (3.1) into expression (1.2) for the fundamental solution, we obtain its representation as 
an asymptotic series. We write down the initial terms of this series and substitute the result into expression 
(1.2) for the fundamental solution 

1 (sin(Nt-n/4) sin(Ntlzl/R+Tt/4) 
* = p4-  + p N4 l/ R 

1 8p3 (Nt)) ~/ 8p3(Ntlzl/R)~ R "4 +'" 

p2 =x2+y2,  R2 =p2+Z2, 0<8<---0<1-8 (3.2) 
R 

The asymptotic form (3.2) is non-uniform and is unsuitable for approximations when z ---> 0 
or p ---> 0. Sections 4--6 uniform asymptotic formulae will be used to obtain an efficient numerical 
realization. 

4. U N I F O R M  A P P R O X I M A T I O N  IN THE D O M A I N  0 <~ ~. ~< ~.0 < 1 

Substituting the identities 

l II ~ = ( k 2 + Z 2 _ ~ 2 ) _ ~ =  ~, ( _ l ) , ( 2 n _ i ) .  ' (~.2_~2)n 
,,=0 (2n) [! k 2n+l 

( 2 n - 1 ) ! !  L 2'' (~2 - l)" 
1 = y, ( - i ) "  k_,,,÷, > 

C _ ~ 2  (2n)!! tl=O 

, 0 ~ <  ~, 

into (1.5) and using the fact that 
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2 2 (~,2_~:2),,-~¢os(x~)d~=._~77j,,(~.x)(2n_l)!! " _ ~ (~2-1) n-~ an(T) 
l [  0 1~ I 

(4.1) 

we obtain the following representation of tp(~,, x) as a series 

~(~., '0= ~, (-l)" (2n- i ) ! !  ~." ((2n-l)!!J,,(~.x)-;~,"a,,(x)) 
n=O (2n)!! k2'J+lX" 

0 ~ . < 1 - 8 < 1  

(4.2) 

The coefficient a0 can be expressed in terms of an integral of the Bessel function 

a°('t)=2 i cos(' g)d  Jo(.),t. 

When n ~> 1 the functions an(x) can no longer be represented in a simple way in terms of known 
special functions. We find the asymptotic form oral  and a2 by taking two terms of the asymptotic series 
for al and one term for a2 

a2 :.- -'~2 i d~2 ~d2((~ 2 P-l)~)e°s(x~)d~=-3a°(x)+O(x-~) 

al = -  41 _~2 1 
n x 

Substituting these values into (4.2) and taking the first three terms of the series, we obtain the 
approximation fon~ula 

~---- 8 k-'--'5~ 2 J0(X~)-\  2~X "4 " 
( /  2~. 2 9 L 4 ) !  

- k3"c 2 8 kSx 2 J°(u)du- J°(x)+O(x-~) 

0~< ~,~< ~,0 < 1 
(4.3) 

The efficiency of (4.3) will be demonstrated by a numerical experiment. Formula (4.3) is more accurate 
the smaller the ratio E/x. 

5. U N I F O R M  A P P R O X I M A T I O N  OF ~p FOR 0 < 8 < ~ < 1 

We use represerLtation (1.7) and set 

f l(0)= ~, A,(~.) (1-~')2" sin2"0 
,,=o (8~.(I + Z+)) "+Y: 
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f2(0) = (1 - X)cos0 ~. B,(X) (1 - ~')2" sin2" 0 
,,ffi0 (8X(I +X)) s'+~ (5.1) 

The method of computing the coefficients An(X ) and Bn(~,) will be demonstrated below. Substituting 
(5.1) into (1.7) and using the well-known integral representations of Bessel functions [4], we obtain 

(pt(~.,'O = ~ As,(X)2"+l(2n-1)!! 
,=o t" (8X(I + ~))"+~ 

q ~ 2 ( X , x ) =  ~ B , , ( X ) 2 " + l ( 2 n  - l ) ! !  
n=O 

(i.av,+,. (i-__~_) 

t"(sko + X)) "+~ 

(5.2) 

The coefficientsAn(~,) and Bn(X) can be determined from the equations 

1 1 1 ,~ A,, (~.)w" 

I I (I -~L)u 
Z :  ~ ~ = ~ ,,~,, B,,(X),, 'n 

W = ( |  - -  ~ , ) 2  (1 - u 2 )(82L(I - 2L)) -I 

Since 

8~(1  + ~.)y2 = Q ( u )  + Q ( - u )  = Co 0,.) - Cl (X  ) w  + c 2 (~ , )w  2 + . . . .  
Q(u)Q(-u)  

9 9 

= A~ (~,) + 2Ao(k)A I (~)w + (A i" + 2AoA 2 )w- +... 

co(X)=O+d-f) 2, c,O.)=l+4-X+4X+X~+X 2 

c2(X) = 1 ( 4 +  3~/~ + 16X + 2k ~ + 16X 2 + 3X ~ +4X 3) 

equating the coefficients of the same powers of w, we obtain 

Ao= o =l÷4L 

c 2 - A~ 
A2 = 2(I + 4"X) 

Al=_ q = !+~/-~+4x+k~+x2 
2Ao 2(1 + d-£) 

To determine the coefficients B n we use the identity 

+ X-')w-+...= 8 k ( l + X ) y z = l - ( l + X ) w + ( i + X  ~ ' 

= AoB 0 + (A I B 0 + AoB I )w + (A2B o + BIA I + AoB 2)w2 +... 

Equating coefficients of like powers, we obtain 

1 1 

A o I + -~f'~ ' 
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!+~.+ BoA | I + 3"~+3~.~  + ~. 2 
B I = = -  ao 20+qx) 

I + X + X 2 - a ,  Bt - A 2 e o  

= 1+4- f  

When 0 < 5 ~< g ~< 1 to compute qh and ~ we will use approximations which can be obtained by 
taking the first three terms of series (5.2). The smaller (1 - X)/x is the more accurate the approximations. 

6. A P P R O X I M A T I O N S  OF q~ F O R  S M A L L  x 

For small value.,; of x we shall use the approximation 

sin(kx) _ x + /  kx 
S Jo (u)du 

+k2k2 9+3~2 ~7 k2"~,r9 
+ l+~g4+ m m + . . .  

8 7! 4 J 9! ) (6.1) 

which can be obtained if ~1(1 - k 2 sin 2 u) in (1.6) is replaced by ~](X 2 + k 2 cos 2 u), the integrand is expanded 
in powers of x, the integrals of even powers of cos u are computed, and terms not containing ~ and not 
containing k are added separately. Note that taking the limit as X --> 0 or k --> 0 in (6.1) gives precise 
results. 

,5 .g 

Fig. 1. 
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Fig. 2. 
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2 

Fig. 3. Fig. 4. 

7. N U M E R I C A L  E X P E R I M E N T  T O  V E R I F Y  T H E  E F F E C T I V E N E S S  O F  
T H E  A P P R O X I M A T I O N  F O R M U L A E  

The result of computing ~ k ,  x) from (1.6) will be denoted by to. We denote by tox-~0 the result obtained from 
the approximate formula (6.1), by tlK~0 the results from (4.3), and by 9x~1 the result f rom (5.2). In Figs 1-4 X is 
measured along the horizontal axis and x along the vertical axis. Computations were carried out for 0 ~< x ~< 20, 
0 ~< X ~< 1. In Figs 1-3 we present the level curves of  the approximation errors 

E = to - tox~0, E = to - to~.-~0, E = q~ - tox~, 

The numbers 1-4 next to the level curves correspond to the errors 10 -1 , 10 -2 , 10 -3 , 10 -4 . Numbers 5-8 correspond 
to the negative errors -10  -1 , -10  -2 , - 1 0  -3 , - 1 0 - 4 .  

If  the relative computer  t ime required to evaluate to is taken to be one, the t ime taken to compute tox-,0, tl~--,0, 
to~-,1, will be 0.0034, respectively. These times are obtained for computations on a uniform mesh for 0 <~ x <~ 500, 
0 ~ < X < ~ I .  

Let  

a(x) = 0.3 + 0.05846(x - 4.776) 2, b(~.)'= 4.796 - 3.739~. 

Using the approximations to~__~, q~--~0, ~0x~l the global approximation to. can be computed for 0 ~< x < +oo, 0 ~< 
~< 1 as follows: 

If a(x) < X < 0.5, then to. = tox--,1; if X < a(x), x < 3.2975, then to, = tox--,0; if X < a(x), x > 3.2975, then tO, = 
tox--~x; if X > 0.5, x < b(X), then to. = tox--,0; if X > 0.5, x < b(X), then to. = q~--,x. 

The  absolute approximation error  e = to - to. presented in Fig. 4 varies over  the whole domain of  x, X from - 
0.0028 to 0.0017, while to itself varies from -1.04 to 1.46. The region of  worst approximation lies in the vicinity of 
X = 0.5, x = 5 and decreases rapidly as x increases. The average t ime taken to compute  to. is equal to 0.0045 of  
the t ime taken to compute.  

T h i s  r e s e a r c h  was  s u p p o r t e d  f inanc ia l ly  by the  Russ i an  F o u n d a t i o n  fo r  Bas ic  R e s e a r c h  (962/96).  
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