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UNIFORM APPROXIMATIONS OF THE FUNDAMENTAL
SOLUTION OF THE EQUATION OF INTERNAL WAVEST
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New representations of the fundamental solution of the equation of internal waves as convergent and asymptotic series are
proposed using special functions. A system of three formulae is constructed, each defining a uniform approximation of the
fundamental solution i some space-time domain, the union of these domains covering the whole space-time continuum. The
results of a numerical experiment are presented, which show that the relative approximation error does not exceed 0.5%, while
the computer time required to calculate the fundamental solution is reduced by a factor of over 200 as compared to the exact
formulae. Copyright © 1996 Elsevier Science Ltd.

1. INTEGRAL REPRESENTATIONS OF THE
FUNDAMENTAL SOLUTION

The linear equation of internal waves in the Boussinesq approximation has the form [1]

i (82w 3w azw]+ Nz(azw LW ] _9*M(x,y5,1) (L1)

— + 5
o> | ox? * dy*>  97° ax? 9y’ dz0t

where w is a small vertical displacement of a fluid particle from the equilibrium position, M is the
distribution of the mass sources, and N is the Viisdli-Brunt frequency If p(z) defines the density
distribution in the equilibrium state of an incompressible fluid, then N> = —gp’(z)/p(z) = 0, and if &(2)
defines the entropy distribution in the equilibrium state of an 1deal gas, then N* = ge/(z)/e(z) = 0. We
shall assume that N = const. Equation (1.1) holds for slow motions of a stratified gas.

The fundamental solution ®(x, y, z, ¢) satisfies Eq. (1.1) with right-hand side 8(x)3(y)8(z)(¢).

For a historical survey and bibliography see [1, 2].

The solution of physical problems concerned with the motion of point sources, sinks, and dipoles
can be expressed in terms of the derivatives of the fundamental solution with respect to the space and
time variables. The solution of problems involving the motion of distributed sources or dipoles can be
reduced to computing the convolution of known functions with the fundamental solution. The efficiency
of a numerical solution of such problems depends on how rapidly the values of the fundamental solution
can be calculated.

The function @ can be represented in the form

<l>-—-—(p( N, Ri=x'+yi+z 7u=—‘;’3 (12)
where the Laplace transform of ¢ has the form [1, 2]
Lo=(p2+ N2y A(p?+ N2y (13)

(p is the dual variable to f).
Applying contour integration methods, one can change from (1.3) to the original representation [2]
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Because ¢ is an even function of A, we can henceforth assume without loss of generality that A = 0.
Taking another branch of the analytic function (1.3), we can write

cos(1E€)dE 2z cos(tg)dE,

oA, 'c)— , 0sAc<l (1.5)
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The substitution tg? u = (£2 - A%)(1 - £2) reduces the integral (1.4) to
/2 N
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One more integral representation of @(A, t) can be obtained by making the substitution 2§ = 1 + A —
(1 — A)cos 6 in the integral (1.4). Then
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The calculation of the values of @, ¢;, ¢, from the integral formulae (1.4)—(1.7) requires large amounts
of computer time. Since the solution of the Cauchy problem and non-homogeneous problems for
Egq. (1.1) is expressed in terms of various convolutions of the fundamental solution with known functions,
the time required to compute the convolutions makes it difficult to solve such problems numerically.
It is therefore better to obtain approximations of the fundamental solution which will make it possible
to compute the values of ¢ with sufficient accuracy in a relatively short computer time.

2. REPRESENTATIONS OF ¢ AS A SERIES INVOLVING SPECIAL
FUNCTIONS

We propose a number of new representations of ¢. We will denote by J,,(z), P,(z) and T,(z) the Bessel
functions, the Legendre polynomial, and the Chebyshev polynomial [3]. The representation

QT =23,y (DP(1-20%) @1)

n=0

holds. When 1 is fixed, J,,,+1(7) decreases rapidly as # increases and series (2.1) converges rapidly.
To prove (2.1) we substitute the identities

LOS(T‘\“—k sin u) .Io(‘t)+22 Js, (D5, (ksin Q)
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0

into (1.4), thereby obtaining
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The functions @, and ¢, in (1.7) can also be represented by the series
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To prove (2.2) we use the identities
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which are easily derived from the expression for the generating function of Legendre polynomials.
Series (2.2) converge uniformly in T at a geometric rate. Indeed

IP.(x)< (le+\/|x2 —1|)", A< 1
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In addition, series (2.2) are uniformly asymptoticintas A — 1.

We observe that the larger the value of 1 the slower the convergence of (2.1). A numerical experiment
indicates that computing the values of the function from (2.1) and (2.2) does not give any substantial
gain in computer time as compared to calculations using the integral formulae.

3. THE ASYMPTOTIC SERIES AS 1t > o AND WHENO <8 <A <1-3

We propose a new form of asymptotic series for ¢ as T — . Let us introduce the polynomials
2y g2 2an-2m-1N"
Cn(k =k "n§0 F (k ) 2‘1n 2m
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We can represent ¢ by an asymptotic series of the form
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for0 < 8 < A < 1-3and 1 — . All terms of asymptotic series (3.1) are defined apart from a function
which converges to zero as T — = more rapidly than any negative power of 1.
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Expansion (3.1) can be obtained by applying the stationary-phase method [4] to integral (1.6). This integral has
two stationary points # = 0 and u = /2. If the contribution of u = 0 to the asymptotic series is /;(k%, 1), it can
easily be shown by changing the variable of integration that the contribution Iz(kz, 1) of the point ¥ = m/2 can be
expressed in terms of I;(K, 7)

I I
12(’( ,T)—xll(—k—z,‘tl}

By making the change of variable 1 - V(1 - k2 sin? &) = K*v?/2 in integral (1.6) we find that I, (k% 1) is equal to
the contribution of the stationary point v = 0 to the asymptotic form of the integral

2 | sin(t(d = k% ?))du
T o -k 240 -vi+kYt14)

Using the generating funiction for Legendre polynomials to represent the function multiplying the sine function
as a series with even powers of v and then estimating all the standard integrals as in the stationary-phase method
[4], we obtain formulae (3.1).

Let us write down expressions for the first three polynomials C, and D,

| k2

| 2 4
=Dy=1, C=—+—, C,=——~48—8k2+3k
Co=Do 172" 8 27128 )

4 -5k 1 ) s
D, = . D, =——(48 —88k? +43k*)
! 8 2= 128"

Substituting (3.1) into expression (1.2) for the fundamental solution, we obtain its representation as
an asymptotic series. We write down the initial terms of this series and substitute the result into expression
(1.2) for the fundamental solution

®= 1 sin(Nt—n/4)+sin(NtIzl/R+1t/4)_
N+32n p/Nt p[NilZl/ R
2 2 22 _ a2 .
_RCp +4z) +4; Sin(Nr+ 7/ 4)+ —S oL —P )y sin(N""'-1)+...
8p” (N1)”? 8p" (Nrlzl/ R)? R 4
pr=xl+y:, RY=pl+7%, 0<5<%<|-8 (3.2)

The asymptotic form (3.2) is non-uniform and is unsuitable for approximations when z — 0
or p — 0. Sections 4-6 uniform asymptotic formulae will be used to obtain an efficient numerical
realization.

4. UNIFORM APPROXIMATION IN THE DOMAIN 0 = A € 35 < 1
Substituting the identities

| . 2n=D1 (A=K

ka2 By (- <
— =+ -EH A= T ) T S, 0<Esh
1___§ gy @n-bl MR-y

—— — E>l
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into (1.5) and using the fact that
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we obtain the following representation of @(A, 1) as a series
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The coefficient gy can be expressed in terms of an integral of the Bessel function

Jo(u)du

When 7 = 1 the functions a,(t) can no longer be represented in a simple way in terms of known
special functions. We find the asymptotic form of a, and a, by taking two terms of the asymptotic series
for a; and one term for a,

0 2 2 _ WA -3
a, ==_% '1‘ d—[%u—}os(ti)(@:—3a0(‘t)+0(‘r /3)
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Substituting these values into (4.2) and taking the first three terms of the series, we obtain the

approximation formula
1 9 ¥ A9 A
¢ (k 8 k-‘rz) oleh) (2/&1 4 k5‘t3) V()
P_2M 9 A )% A2 3
- =- -= Jo(u)du — ———J,(1)+ O(1™7"
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The efficiency of (4.3) will be demonstrated by a numerical experiment. Formula (4.3) is more accurate
the smaller the ratio A/t.

5. UNIFORM APPROXIMATION OF ¢ FOR 0 <8 <A <1
We use representation (1.7) and set

= =M
(@)=Y AN ——2L _ sin2g
: ;Eo (8A(1+A))"
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nd (| - )\')2;1 o
(0)=(1-A)cos8 Y B,(\)—————sin>" 8 .
& ;Eo (8A(1+ 1))+ ¥ (5.1)

The method of computing the coefficients 4,(A) and B,(A) will be demonstrated below. Substituting
(5.1) into (1.7) and using the well-known integral representations of Bessel functions [4], we obtain

. , (l-x)"J,,(r'—‘zi)
AT)= 3 A,(A2" -
> ;Eo T (8A(+ MY
(5.2)
n+ 1-A
(1-2) 'J,H,(‘tT)
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The coefficients A,(A) and B,(A) can be determined from the equations

1 1 1 E A, ("
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equating the coefficients of the same powers of w, we obtain
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A, = 2 —Alz
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To determine the coefficients B, we use the identity
SR +AM)yz=1-(1+Mw+(1+ A+ A+ .=
= AgBy + (A By + AgB))w + (A By + B A, + Ay By )W’ +...

Equating coefficients of like powers, we obtain

_ 1

i
By =— .
0 Ay 1+
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1+ A+ ByA, __I+3\/I+37\%+)3
A, 21+VX)
_1+A+M -AB - A,B,
|+«/X

B =

B,

When 0 < 8 < A < 1 to compute ¢, and @, we will use approximations which can be obtained by
taking the first three terms of series (5.2). The smaller (1 — A)/t is the more accurate the approximations.

6. APPROXIMATIONS OF ¢ FOR SMALL 1

For small values of © we shall use the approximation

i kt
A, _sinAt) 1
oA, 1) B VR (j;Jo(u)du
5 2 7 2 9
2,2 T 943A° 1 s k)1
+Xk (;— 3 7—!+[1+?\. +T ;+ (61)

which can be obtained if V(1 — k? sin’) in (1.6) is replaced by V(A2 + k2 cos? u), the integrand is expanded
in powers of 1, the integrals of even powers of cos u are computed, and terms not containing A and not
containing k are added separately. Note that taking the limit as A — 0 or k — 0 in (6.1) gives precise
results.

n
—
—

Fig. 1. Fig. 2.



446 B. N. Gordeichik and A. M. Ter-Krikorov

3

u\

. 7]
v
q(
7
36

8
([ 5.
;
FEX) 0 0,5 P
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7. NUMERICAL EXPERIMENT TO VERIFY THE EFFECTIVENESS OF
THE APPROXIMATION FORMULAE

The result of computing ©(A, ) from (1.6) will be denoted by ¢. We denote by @, o the result obtained from
the approximate formula (6.1), by @,_, the results from (4.3), and by ¢, _,; the result from (5.2). In Figs 1-4 A is
measured along the horizontal axis and T along the vertical axis. Computations were carried out for 0 < t < 20,
0 < A = 1. In Figs 1-3 we present the level curves of the approximation errors

E=Q-0Qr50 E=Q—-Prp E=Q— 0y

The numbers 14 next to the level curves correspond to the errors 107}, 1072, 1073, 10~ Numbers 5-8 correspond
to the negative errors 107, 1072, 107, -107%,

If the relative computer time required to evaluate @ is taken to be one, the time taken to compute ¢,_,g, ¢35,
®1_,1, will be 0.0034, respectively. These times are obtained for computations on a uniform mesh for 0 < 1 < 500,
O0sAsl

Let

a(t) = 0.3 + 0.05846(1 — 4.776)°, h(A)'= 4.796 — 3.739A

Using the approximations ¢,_,g, ©_, P_,1 the global approximation ¢, can be computed for0 <1 < +o,0 <A
=< 1 as follows:

If a(t) < A < 0.5, then @« = @y _,1; if L < a(1), T < 3.2975, then @, = @, if A < a(1), T > 3.2975, then ¢, =
Pro1; ifA > 0.5, T < b(L), then @, = @_p; if A > 0.5, 7T < b(L), then 9, = @, ;.

The absolute approximation error € = ¢ — @. presented in Fig. 4 varies over the whole domain of 1, A from —
0.0028 to 0.0017, while ¢ itself varies from —1.04 to 1.46. The region of worst approximation lies in the vicinity of
A = 0.5, © = 5 and decreases rapidly as 1 increases. The average time taken to compute @. is equal to 0.0045 of
the time taken to compute.
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